Directionality of electron-transfer reactions in photosystem I of prokaryotes: universality of the bidirectional electron-transfer model.

نویسندگان

  • Stefano Santabarbara
  • Ilya Kuprov
  • Oleg Poluektov
  • Antonio Casal
  • Charlotte A Russell
  • Saul Purton
  • Michael C W Evans
چکیده

The electron-transfer (ET) reactions in photosystem I (PS I) of prokaryotes have been investigated in wild-type cells of the cyanobacterium Synechocystis sp. PCC 6803, and in two site-directed mutants in which the methionine residue of the reaction center subunits PsaA and PsaB, which acts as the axial ligand to the primary electron chlorophyll acceptor A(0), was substituted with histidine. Analysis by pulsed electron paramagnetic resonance spectroscopy at 100 K indicates the presence of two forms of the secondary spin-correlated radical pairs, which are assigned to [P(700)(+)A(1A)(-)] and [P(700)(+)A(1B)(-)], where A(1A) and A(1B) are the phylloquinone molecules bound to the PsaA and the PsaB reaction center subunits, respectively. Each of the secondary radical pair forms is selectively observed in either the PsaA-M688H or the PsaB-M668H mutant, whereas both radical pairs are observed in the wild type following reduction of the iron-sulfur cluster F(X), the intermediate electron acceptor between A(1) and the terminal acceptors F(A) and F(B). Analysis of the time and spectral dependence of the light-induced electron spin echo allows the resolution of structural differences between the [P(700)(+)A(1A)(-)] and [P(700)(+)A(1B)(-)] radical pairs. The interspin distance is 25.43 ± 0.01 Å for [P(700)(+)A(1A)(-)] and 24.25 ± 0.01 Å for [P(700)(+)A(1B)(-)]. Moreover, the relative orientation of the interspin vector is rotated by ~60° with respect to the g-tensor of the P(700)(+) radical. These estimates are in agreement with the crystallographic structural model, indicating that the cofactors bound to both reaction center subunits of prokaryotic PS I are actively involved in electron transport. This work supports the model that bidirectionality is a general property of type I reaction centers from both prokaryotes and eukaryotes, and contrasts with the situation for photosystem II and other type II reaction centers, in which ET is strongly asymmetric. A revised model that explains qualitatively the heterogeneity of ET reactions at cryogenic temperatures is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of cytochrome bf complex of photosynthesis apparatus

Photosynthesis is a process under which, the radiative energy is converted into the chemical one. Compared to the man-made devices, the photosynthesis apparatus is much more efficient. This high efficiency comes from its elaborate structure, very fast transition rates and a complex electron and proton transfer chain among the subunits of the apparatus. Its main subunits (Photosystem I (PSI), bf...

متن کامل

Inverted-region electron transfer as a mechanism for enhancing photosynthetic solar energy conversion efficiency.

In all photosynthetic organisms, light energy is used to drive electrons from a donor chlorophyll species via a series of acceptors across a biological membrane. These light-induced electron-transfer processes display a remarkably high quantum efficiency, indicating a near-complete inhibition of unproductive charge recombination reactions. It has been suggested that unproductive charge recombin...

متن کامل

Coupled electron transfers in artificial photosynthesis.

Light-induced charge separation in molecular assemblies has been widely investigated in the context of artificial photosynthesis. Important progress has been made in the fundamental understanding of electron and energy transfer and in stabilizing charge separation by multi-step electron transfer. In the Swedish Consortium for Artificial Photosynthesis, we build on principles from the natural en...

متن کامل

Photophosphorylation Associated with Photosystem II: III. Characterization of Uncoupling, Energy Transfer Inhibition, and Proton Uptake Reactions Associated with Photosystem II Cyclic Photophosphorylation.

A number of uncouplers and energy transfer inhibitors suppress photosystem II cyclic photophosphorylation catalyzed by either a proton/electron or electron donor. Valinomycin and 2,4-dinitrophenol also inhibit photosystem II cyclic photophosphorylation, but these compounds appear to act as electron transport inhibitors rather than as uncouplers. Only when valinomycin, KCl, and 2,4-dinitrophenol...

متن کامل

The Principles and Recent Applications of Bioelectrocatalysis

Bioelectrocatalysis is a phenomenon concerned with biological catalysts, which accelerate the electrochemical reactions. Bioelectrocatalysis has been widely explored by the research community in various directions. Enzymes can catalyze different chemical reactions in living organisms by enzymes as the most important biological catalysts. These enzymatic biocatalysts are commercially available a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 114 46  شماره 

صفحات  -

تاریخ انتشار 2010